Spanning alternating closed trails in 2-edge-coloured graphs

Jørgen Bang-Jensen
University of Southern Denmark

Yannis day, Orsay October 10, 2022

Consider the following conversion of a given digraph $D=(V, A)$ to a 2-edge-coloured bipartite graph $G(D)$: The vertex set of $G(D)$ is $V \cup\left\{w_{u v} \mid u v \in A\right\}$ and the set of edges of $G(D)$ consist of and edge $u w_{u v}$ of colour 1 and an edge $w_{u v} v$ of colour 2 for every arc $u v \in A$.

It is easy to see that every directed path, cycle, trail and walk, respectively in D corresponds to a path, cycle, trail and walk, respectively in $G(D)$ where the colours alternate between 1 and 2 .

It is easy to see that every directed path, cycle, trail and walk, respectively in D corresponds to a path, cycle, trail and walk, respectively in $G(D)$ where the colours alternate between 1 and 2 .

The converse also holds when the path, trail or walk must start and end in a vertex of V.

It is easy to see that every directed path, cycle, trail and walk, respectively in D corresponds to a path, cycle, trail and walk, respectively in $G(D)$ where the colours alternate between 1 and 2 .

The converse also holds when the path, trail or walk must start and end in a vertex of V.

Let $G=(V, E)$ be a graph and let $\phi: E \rightarrow\{1,2\}$ be a 2-edge-colouring of E. A path, cycle,trail or walk X in G is alternating if the edges of X alternate between colours 1,2. In figures we represent colour 1 in red and colour 2 in blue.

Colour-connectivity

A graph G is colour-connected if there exist two alternating (u, v)-paths P_{1}, P_{2} whose union is an alternating walk for every choice of distinct vertices u, v.

Lemma 1 (Bang-Jensen and Gutin 1998)

One can decide in polynomial time whether a given 2-edge-coloured graph is colour-connected.

Colour-connectivity

A graph G is colour-connected if there exist two alternating (u, v)-paths P_{1}, P_{2} whose union is an alternating walk for every choice of distinct vertices u, v.

Lemma 1 (Bang-Jensen and Gutin 1998)

One can decide in polynomial time whether a given 2-edge-coloured graph is colour-connected.

A simpler characterization of colour-connectivity is as follows.

Lemma 2

Let G be a 2-edge-coloured graph. Then G is colour-connected if and only if G has an alternating (u, v)-path starting with colour c for each colour $c \in\{1,2\}$ and every ordered pair of vertices u, v.

An alternating cycle factor in a 2-edge-coloured graph G is a collection of disjoint alternating cycles that cover $V(G)$

An alternating cycle factor in a 2-edge-coloured graph G is a collection of disjoint alternating cycles that cover $V(G)$

We start by recalling a very useful correspondence between bipartite 2-edge-coloured graphs and directed bipartite graphs. This has been used several times in the literature. In particular by Häggkvist and Manoussakis

An alternating cycle factor in a 2-edge-coloured graph G is a collection of disjoint alternating cycles that cover $V(G)$

We start by recalling a very useful correspondence between bipartite 2-edge-coloured graphs and directed bipartite graphs. This has been used several times in the literature. In particular by Häggkvist and Manoussakis

Let $G=(X, Y, E)$ be a bipartite graph for which each edge is coloured red or blue. Let $D=D(G)=(X, Y, A)$ be the bipartite digraph that we obtain from G by orienting every red edge $x y$, $x \in X, y \in Y$, as the arc $x \rightarrow y$ and every blue edge $x^{\prime} y^{\prime}, x^{\prime} \in X, y^{\prime} \in Y$, as the arc $y^{\prime} \rightarrow x^{\prime}$.

An alternating cycle factor in a 2-edge-coloured graph G is a collection of disjoint alternating cycles that cover $V(G)$

We start by recalling a very useful correspondence between bipartite 2-edge-coloured graphs and directed bipartite graphs. This has been used several times in the literature. In particular by Häggkvist and Manoussakis

Let $G=(X, Y, E)$ be a bipartite graph for which each edge is coloured red or blue. Let $D=D(G)=(X, Y, A)$ be the bipartite digraph that we obtain from G by orienting every red edge $x y$, $x \in X, y \in Y$, as the arc $x \rightarrow y$ and every blue edge $x^{\prime} y^{\prime}, x^{\prime} \in X, y^{\prime} \in Y$, as the arc $y^{\prime} \rightarrow x^{\prime}$.
Now every alternating path, cycle, trail or walk in G corresponds to a directed path, cycle, trail or walk in D.

It is clear that we can also go the other way by replacing each arc from X to Y by a red edge and each other arc by a blue edge.

It is clear that we can also go the other way by replacing each arc from X to Y by a red edge and each other arc by a blue edge.

We denote by $C M(D)$ the edge-coloured bipartite graph obtained in the way from D. This is called the BB-correspondence in BJG Chapter 11.

It is clear that we can also go the other way by replacing each arc from X to Y by a red edge and each other arc by a blue edge.

We denote by $C M(D)$ the edge-coloured bipartite graph obtained in the way from D. This is called the BB-correspondence in BJG Chapter 11.

Proposition 3

The following claims are equivalent for a bipartite digraph D :
(a) D is strongly connected.
(b) $C M(D)$ is colour-connected.

The following is an immediate consequence of the BB-correspondence and well-known fact that the hamiltonian cycle problem is NP-complete for strongly connected bipartite digraphs.

Theorem 4

It is NP-complete to decide whether a colour-connected 2-edge-coloured bipartite graph has an alternating hamiltonian cycle.

Hamiltonian cycles in 2-edge-coloured complete graphs

The following important theorem due to Bankfalvi and Bankfalvi was originally formulated it in a different, but equivalent way.

Theorem 5 (Bankfalvi and Bankfalvi 1968)

Let H be a 2-edge-coloured complete graph. Then H has an alternating hamiltonian cycle if and only if H is colour-connected and has an alternating cycle factor.

Hamiltonian cycles in 2-edge-coloured complete graphs

The following important theorem due to Bankfalvi and Bankfalvi was originally formulated it in a different, but equivalent way.

Theorem 5 (Bankfalvi and Bankfalvi 1968)

Let H be a 2-edge-coloured complete graph. Then H has an alternating hamiltonian cycle if and only if H is colour-connected and has an alternating cycle factor.

As explained in the next slides this implies the following

Theorem 6

A 2-edge-coloured complete bipartite graph has an alternating hamiltonian cycle if and only if it is colour-connected and has an alternating cycle factor.

Hamiltonian cycles in bipartite tournaments

A bipartite tournament is a bipartite digraph with partition classes X and Y such that there is precisely one arc between each vertex of X and each vertex of Y.

Hamiltonian cycles in bipartite tournaments

A bipartite tournament is a bipartite digraph with partition classes X and Y such that there is precisely one arc between each vertex of X and each vertex of Y.

A cycle-factor in a digraph D is a disjoint collection of cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $V(D)=V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)$.

Hamiltonian cycles in bipartite tournaments

A bipartite tournament is a bipartite digraph with partition classes X and Y such that there is precisely one arc between each vertex of X and each vertex of Y.

A cycle-factor in a digraph D is a disjoint collection of cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $V(D)=V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)$.

By using the BB correspondance and Theorem 6, Häggkvist and Manousakis proved the following characterization of hamiltonian bipartite tournaments.

Hamiltonian cycles in bipartite tournaments

A bipartite tournament is a bipartite digraph with partition classes X and Y such that there is precisely one arc between each vertex of X and each vertex of Y.

A cycle-factor in a digraph D is a disjoint collection of cycles $C_{1}, C_{2}, \ldots, C_{k}$ such that $V(D)=V\left(C_{1}\right) \cup \ldots \cup V\left(C_{k}\right)$.

By using the BB correspondance and Theorem 6, Häggkvist and Manousakis proved the following characterization of hamiltonian bipartite tournaments.

Theorem 7 (Häggkvist and Manoussakis 1989; Gutin 1984)

A bipartite tournament has a hamiltonian cycle if and only if it is strongly connected and has a cycle factor.

In his PhD thesis, supervised by Manoussakis, Rachid Saad proved the following characterization of the length of a longest alternating cycle in a colour-connected 2-edge-coloured complete graph.

Theorem 8 (Saad 1996)

Let G be a colour-connected 2-edge-coloured complete graph. The length of a longest alternating cycle in G is equal to the maximum number of vertices that can be covered by disjoint alternating cycles in G.

In his PhD thesis, supervised by Manoussakis, Rachid Saad proved the following characterization of the length of a longest alternating cycle in a colour-connected 2-edge-coloured complete graph.

Theorem 8 (Saad 1996)

Let G be a colour-connected 2-edge-coloured complete graph. The length of a longest alternating cycle in G is equal to the maximum number of vertices that can be covered by disjoint alternating cycles in G.

Theorem 8 immediately implies the Bankfalvi and Bankfalvi theorem (Theorem 5).

Irreducible cycle factors

In the figure the 2-edge-coloured complete graph G is not colour-connected since there is no alternating path starting with a blue (red) edge from a red (blue) vertex on C_{2} to any vertex of C_{1}.

For a given alternating cycle factor C_{1}, \ldots, C_{p}, we write $C_{i} \rightarrow C_{j}$ if the relationship between the cycles is as indicated in the figure above where $j>i$.

For a given alternating cycle factor C_{1}, \ldots, C_{p}, we write $C_{i} \rightarrow C_{j}$ if the relationship between the cycles is as indicated in the figure above where $j>i$.
Denote by X_{j} vertices of C_{j} that send only red edges to the left to the left and by Y_{j} the vertices of C_{j} that send only blue edges to the left.

For a given alternating cycle factor C_{1}, \ldots, C_{p}, we write $C_{i} \rightarrow C_{j}$ if the relationship between the cycles is as indicated in the figure above where $j>i$.
Denote by X_{j} vertices of C_{j} that send only red edges to the left to the left and by Y_{j} the vertices of C_{j} that send only blue edges to the left.

Theorem 9 (Bang-Jensen and Gutin 1998)

Let G have an alternating cycle factor \mathcal{F} consisting of $p \geq 2$ cycles. \mathcal{F} is an irreducible alternating cycle factor of G if and only if we can label the cycles in \mathcal{F} as C_{1}, \ldots, C_{p}, such that, with the notation introduced above, for every $1 \leq i<j \leq p$,
$\chi\left(X_{j} V\left(C_{i}\right)\right)=1, \chi\left(Y_{j} V\left(C_{i}\right)\right)=2, \chi\left(X_{j} X_{j}\right)=1, \chi\left(Y_{j} Y_{j}\right)=2$.

M-closed 2-edge-coloured graphs

Below we consider a generalization of 2-edge-coloured complete multigraphs, namely those 2-edge-coloured graphs for which the end-vertices of every monochromatic path of length 2 are adjacent, that is, if $x y z$ is a path and $\phi(x y)=\phi(y z)$, then $x z$ is an edge of the graph.
The authors call such graphs M-closed.

M-closed 2-edge-coloured graphs

Below we consider a generalization of 2-edge-coloured complete multigraphs, namely those 2-edge-coloured graphs for which the end-vertices of every monochromatic path of length 2 are adjacent, that is, if $x y z$ is a path and $\phi(x y)=\phi(y z)$, then $x z$ is an edge of the graph.
The authors call such graphs M-closed.

Theorem 10 (Contreras-Balbuena, Galeana-Sáanchez and Goldfeder 2019)

Let G be a 2-edge-coloured graph which is M-closed. Then G has an alternating hamiltonian cycle if and only if it is colour-connected and has an alternating cycle factor.

Note the similarity between the condition for being M-closed and the condition for a digraph to be locally semicomplete. A digraph is locally semicomplete if the in-neighbourhood and the out-neighbourhood of each vertex induces a semicomplete digraph. The example below shows that this analogy does not extend to in-semicomplete digraphs.

Figure: A 2-edge-coloured graph G in which the end vertices x, z are adjacent for every path $x y z$ with $\phi(x y)=\phi(y z)=2$ (2=blue). G is colour-connected and has a cycle factor but it has no alternating hamiltonian cycle. It also has no spanning closed alternating trail.

Trail-colour-connectivity

We call a 2-edge-coloured graph G trail-colour-connected if G contains two alternating (u, v)-trails T_{1}, T_{2} whose union is an alternating walk for every pair distinct vertices u, v.

Trail-colour-connectivity

We call a 2-edge-coloured graph G trail-colour-connected if G contains two alternating (u, v)-trails T_{1}, T_{2} whose union is an alternating walk for every pair distinct vertices u, v.

The following analogous of Lemma 2 is easy to derive using almost the same proof as that of Lemma 2.

Lemma 11

Let G be a 2-edge-coloured graph. Then G is
trail-colour-connected if and only if G has an alternating (u, v)-trail starting with colour c for each colour $c \in\{1,2\}$ and every ordered pair of vertices u, v.

Lemma 12 (Bang-Jensen, Bellitto and Yeo 2020)

A 2-edge-coloured complete multipartite graph is colour-connected if and only if it is trail-colour-connected.

Theorem 13 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be a 2-edge coloured graph and let $x, y \in V(G)$ be arbitrary. We can decide if there is a trail from x to y starting with colour c_{1} and ending with colour c_{2} in polynomial time.

Eulerian factors and supereulerian edge-coloured graphs

- Recall that a connected undirected graph is eulerian if it has a spanning closed trail which uses every edge. By Euler's theorem, G is eulerian if and only if it is connected and the degree of every vertex is even. This can be generalized to 2-edge-coloured graphs as follows.

Eulerian factors and supereulerian edge-coloured graphs

- Recall that a connected undirected graph is eulerian if it has a spanning closed trail which uses every edge. By Euler's theorem, G is eulerian if and only if it is connected and the degree of every vertex is even. This can be generalized to 2-edge-coloured graphs as follows.
- A 2-edge coloured graph F is eulerian if it contains a closed alternating trail which covers all the edges of G.

Eulerian factors and supereulerian edge-coloured graphs

- Recall that a connected undirected graph is eulerian if it has a spanning closed trail which uses every edge. By Euler's theorem, G is eulerian if and only if it is connected and the degree of every vertex is even. This can be generalized to 2-edge-coloured graphs as follows.
- A 2-edge coloured graph F is eulerian if it contains a closed alternating trail which covers all the edges of G.
- Following the standard proof of Euler's theorem is easy to see that a connected 2-edge coloured graph G is eulerian if and only if each vertex v has even degree and half of the edges incident to v have colour i for $i \in[2]$.

Eulerian factors and supereulerian edge-coloured graphs

- Recall that a connected undirected graph is eulerian if it has a spanning closed trail which uses every edge. By Euler's theorem, G is eulerian if and only if it is connected and the degree of every vertex is even. This can be generalized to 2-edge-coloured graphs as follows.
- A 2-edge coloured graph F is eulerian if it contains a closed alternating trail which covers all the edges of G.
- Following the standard proof of Euler's theorem is easy to see that a connected 2-edge coloured graph G is eulerian if and only if each vertex v has even degree and half of the edges incident to v have colour i for $i \in[2]$.
- Following the same definitions for graphs and digraphs, we say that a 2-edge-coloured graph G is supereulerian if it contains a spanning closed alternating trail.

An eulerian factor of a 2-edge-coloured graph G is a collection of vertex-disjoint induced subgraphs $G_{1}=\left(V_{1}, E_{1}\right), \ldots, G_{k}=\left(V_{k}, E_{k}\right)$ of G, such that $V=V_{1} \cup \ldots \cup V_{k}$ and each G_{i} is supereulerian.

An eulerian factor of a 2-edge-coloured graph G is a collection of vertex-disjoint induced subgraphs $G_{1}=\left(V_{1}, E_{1}\right), \ldots, G_{k}=\left(V_{k}, E_{k}\right)$ of G, such that $V=V_{1} \cup \ldots \cup V_{k}$ and each G_{i} is supereulerian.

Lemma 14

There exists a polynomial algorithm for finding an eulerian factor of a 2-edge-coloured graph G or producing a certificate that G has no such factor.

An eulerian factor of a 2-edge-coloured graph G is a collection of vertex-disjoint induced subgraphs $G_{1}=\left(V_{1}, E_{1}\right), \ldots, G_{k}=\left(V_{k}, E_{k}\right)$ of G, such that $V=V_{1} \cup \ldots \cup V_{k}$ and each G_{i} is supereulerian.

Lemma 14

There exists a polynomial algorithm for finding an eulerian factor of a 2-edge-coloured graph G or producing a certificate that G has no such factor.

Let G be a 2-edge-coloured graph. We will construct a new graph, H, such that H has a perfect matching if and only if G has a eulerian factor.

Figure: A 2-edge-coloured graph G with a spanning closed alternating trail in $G v_{1} v_{2} v_{3} v_{4} v_{5} v_{6} v_{3} v_{5} v_{1}$ (indicated as directed edges).

Figure: The graph $H=H(G)$ constructed from the graph G above. The perfect matching corresponding to the spanning eulerian subgraph indicated in the figure above is shown with full lines. The colours are just for easy reference to the other figure.

A digraph is semicomplete multipartite if the underlying undirected graph is a complete multipartite graph.

A digraph is semicomplete multipartite if the underlying undirected graph is a complete multipartite graph.

Theorem 15 (Bang-Jensen and Maddaloni 2015)

A semicomplete multipartite digraph is supereulerian if and only if is is strongly connected and has an eulerian factor.

A digraph is semicomplete multipartite if the underlying undirected graph is a complete multipartite graph.

Theorem 15 (Bang-Jensen and Maddaloni 2015)

A semicomplete multipartite digraph is supereulerian if and only if is is strongly connected and has an eulerian factor.

Since a bipartite tournament is a semicomplete multipartite digraph, the BB-correspondence implies the following characterization of supereulerian 2-edge-coloured complete bipartite graphs.

Corollary 16

A 2-edge-coloured complete bipartite graph G is supereulerian if and only if G is colour-connected and has an eulerian factor.

A digraph is semicomplete multipartite if the underlying undirected graph is a complete multipartite graph.

Theorem 15 (Bang-Jensen and Maddaloni 2015)

A semicomplete multipartite digraph is supereulerian if and only if is is strongly connected and has an eulerian factor.

Since a bipartite tournament is a semicomplete multipartite digraph, the BB-correspondence implies the following characterization of supereulerian 2-edge-coloured complete bipartite graphs.

Corollary 16

A 2-edge-coloured complete bipartite graph G is supereulerian if and only if G is colour-connected and has an eulerian factor.

As both the problem of deciding if a 2-edge-coloured graph is colour-connected and the problem of deciding if it contains an eulerian factor are polynomial time solvable, we note that Corollary 16 implies that we in polynomial time can decide if a 2-edge-coloured complete bipartite graph is supereulerian.

Extensions of edge-coloured graphs

Let G be a 2-edge-coloured graph on $n>1$ vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. By an extension of G we mean any graph $H=G\left[I_{p_{1}}, \ldots, I_{p_{n}}\right]$ that is obtained from G by replacing each vertex v_{i} by an independent set $\left\{v_{i, 1}, \ldots, v_{i, p_{i}}\right\}$ of $p_{i} \geq 1$ vertices, $i \in[n]$ and connecting different such sets as follows:

Extensions of edge-coloured graphs

Let G be a 2-edge-coloured graph on $n>1$ vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. By an extension of G we mean any graph $H=G\left[I_{p_{1}}, \ldots, I_{p_{n}}\right]$ that is obtained from G by replacing each vertex v_{i} by an independent set $\left\{v_{i, 1}, \ldots, v_{i, p_{i}}\right\}$ of $p_{i} \geq 1$ vertices, $i \in[n]$ and connecting different such sets as follows:
If $v_{i} v_{j}$ is an edge in G of colour c then H contains an edge of colour c between $v_{i, q}$ and $v_{j, r}$ for every choice of $q \in\left[p_{i}\right], r \in\left[p_{j}\right]$.

Extensions of edge-coloured graphs

Let G be a 2-edge-coloured graph on $n>1$ vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. By an extension of G we mean any graph $H=G\left[I_{p_{1}}, \ldots, I_{p_{n}}\right]$ that is obtained from G by replacing each vertex v_{i} by an independent set $\left\{v_{i, 1}, \ldots, v_{i, p_{i}}\right\}$ of $p_{i} \geq 1$ vertices, $i \in[n]$ and connecting different such sets as follows:
If $v_{i} v_{j}$ is an edge in G of colour c then H contains an edge of colour c between $v_{i, q}$ and $v_{j, r}$ for every choice of $q \in\left[p_{i}\right], r \in\left[p_{j}\right]$.

Proposition 17

For a 2-edge-coloured graph G the following are equivalent.
(i) G is colour-connected.
(ii) Every extension H of G is colour-connected.

Theorem 18 (Bang-Jensen, Bellitto and Yeo 2020)
Let G be an extension of an M-closed 2-edge-coloured graph. Then G has an alternating hamiltonian cycle if and only if G is colour-connected and has an alternating cycle factor.

Theorem 18 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be an extension of an M-closed 2-edge-coloured graph. Then G has an alternating hamiltonian cycle if and only if G is colour-connected and has an alternating cycle factor.

Armed with Theorem 18 we are now ready to characterize supereulerian extensions of M-closed 2-edge-coloured graphs.

Theorem 18 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be an extension of an M-closed 2-edge-coloured graph. Then G has an alternating hamiltonian cycle if and only if G is colour-connected and has an alternating cycle factor.

Armed with Theorem 18 we are now ready to characterize supereulerian extensions of M-closed 2-edge-coloured graphs.

Note that, by the example below, a supereulerian M-closed 2-edge-coloured graph does not have to be colour-connected, but it must be trail-colour-connected.

Theorem 18 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be an extension of an M-closed 2-edge-coloured graph. Then G has an alternating hamiltonian cycle if and only if G is colour-connected and has an alternating cycle factor.

Armed with Theorem 18 we are now ready to characterize supereulerian extensions of M -closed 2-edge-coloured graphs.

Note that, by the example below, a supereulerian M-closed 2-edge-coloured graph does not have to be colour-connected, but it must be trail-colour-connected.

Figure: A non colour-connected graph with a spanning closed alternating trail.

The figure shows that for M-closed 2-edge-coloured graphs, having a spanning closed alternating trail does not imply colour-connectivity.
Note that the graph is trail-colour-connected, as is every 2-edge-coloured graph with a spanning closed alternating trail.

The figure shows that for M-closed 2-edge-coloured graphs, having a spanning closed alternating trail does not imply colour-connectivity.
Note that the graph is trail-colour-connected, as is every 2-edge-coloured graph with a spanning closed alternating trail.

Theorem 19 (Bang-Jensen, Bellitto and Yeo 2020)
Let G be an extension of an M-closed 2-edge-coloured graph.
Then G is supereulerian if and only if it is trail-colour-connected and has an eulerian factor.

The figure shows that for M-closed 2-edge-coloured graphs, having a spanning closed alternating trail does not imply colour-connectivity.
Note that the graph is trail-colour-connected, as is every 2-edge-coloured graph with a spanning closed alternating trail.

Theorem 19 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be an extension of an M-closed 2-edge-coloured graph. Then G is supereulerian if and only if it is trail-colour-connected and has an eulerian factor.

Theorem 20

It is NP-complete to decide if a 2-edge-coloured graph is supereulerian.

For general 2-edge-coloured complete multipartite graphs, we have no correspondence similar to the BB-correspondence.

For general 2-edge-coloured complete multipartite graphs, we have no correspondence similar to the BB-correspondence.

Problem 21

What is the completely of deciding whether a 2-edge-coloured complete multipartite graph has an alternating hamiltonian cycle? Is there a good characterization?

For general 2-edge-coloured complete multipartite graphs, we have no correspondence similar to the BB-correspondence.

Problem 21

What is the completely of deciding whether a 2-edge-coloured complete multipartite graph has an alternating hamiltonian cycle? Is there a good characterization?

The following is an easy consequence of the fact that A 2-edge-coloured complete multipartite graph is colour-connected if and only if it is trail-colour-connected (by Lemma 12).

Proposition 22

If a 2-edge-coloured complete multipartite graph G has a spanning closed alternating trail, then G is colour-connected.

Proposition 23 (Bang-Jensen, Bellitto and Yeo)

There exists infinitely many 2-edge-coloured complete multipartite graphs which are colour-connected and have an alternating cycle factor but are not super-eulerian.

Proposition 23 (Bang-Jensen, Bellitto and Yeo)

There exists infinitely many 2-edge-coloured complete multipartite graphs which are colour-connected and have an alternating cycle factor but are not super-eulerian.

Conjecture 24 (Bang-Jensen, Bellitto and Yeo 2020)

There exists a polynomial algorithm for deciding whether a 2-edge-coloured complete multipartite graph is supereulerian.

