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Consider the following conversion of a given digraph D = (V ,A) to
a 2-edge-coloured bipartite graph G (D): The vertex set of G (D) is
V ∪ {wuv |uv ∈ A} and the set of edges of G (D) consist of and
edge uwuv of colour 1 and an edge wuvv of colour 2 for every arc
uv ∈ A.
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It is easy to see that every directed path, cycle, trail and walk,
respectively in D corresponds to a path, cycle, trail and walk,
respectively in G (D) where the colours alternate between 1 and 2.

The converse also holds when the path, trail or walk must start
and end in a vertex of V .

Let G = (V ,E ) be a graph and let φ : E → {1, 2} be a
2-edge-colouring of E . A path, cycle,trail or walk X in G is
alternating if the edges of X alternate between colours 1,2. In
figures we represent colour 1 in red and colour 2 in blue.
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Colour-connectivity

A graph G is colour-connected if there exist two alternating
(u, v)-paths P1,P2 whose union is an alternating walk for every
choice of distinct vertices u, v .

Lemma 1 (Bang-Jensen and Gutin 1998)

One can decide in polynomial time whether a given
2-edge-coloured graph is colour-connected.

A simpler characterization of colour-connectivity is as follows.

Lemma 2

Let G be a 2-edge-coloured graph. Then G is colour-connected if
and only if G has an alternating (u, v)-path starting with colour c
for each colour c ∈ {1, 2} and every ordered pair of vertices u, v.
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An alternating cycle factor in a 2-edge-coloured graph G is a
collection of disjoint alternating cycles that cover V (G )

We start by recalling a very useful correspondence between
bipartite 2-edge-coloured graphs and directed bipartite graphs.
This has been used several times in the literature. In particular by
Häggkvist and Manoussakis

Let G = (X ,Y ,E ) be a bipartite graph for which each edge is
coloured red or blue. Let D = D(G ) = (X ,Y ,A) be the bipartite
digraph that we obtain from G by orienting every red edge xy ,
x ∈ X , y ∈ Y , as the arc x→y and every blue edge
x ′y ′,x ′ ∈ X , y ′ ∈ Y , as the arc y ′→x ′.
Now every alternating path, cycle, trail or walk in G corresponds to
a directed path, cycle, trail or walk in D.
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It is clear that we can also go the other way by replacing each arc
from X to Y by a red edge and each other arc by a blue edge.

We denote by CM(D) the edge-coloured bipartite graph obtained
in the way from D. This is called the BB-correspondence in BJG
Chapter 11.

Proposition 3

The following claims are equivalent for a bipartite digraph D:

(a) D is strongly connected.

(b) CM(D) is colour-connected.
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The following is an immediate consequence of the
BB-correspondence and well-known fact that the hamiltonian cycle
problem is NP-complete for strongly connected bipartite digraphs.

Theorem 4

It is NP-complete to decide whether a colour-connected
2-edge-coloured bipartite graph has an alternating hamiltonian
cycle.



Hamiltonian cycles in 2-edge-coloured complete graphs

The following important theorem due to Bankfalvi and Bankfalvi
was originally formulated it in a different, but equivalent way.

Theorem 5 (Bankfalvi and Bankfalvi 1968)

Let H be a 2-edge-coloured complete graph. Then H has an
alternating hamiltonian cycle if and only if H is colour-connected
and has an alternating cycle factor.

As explained in the next slides this implies the following

Theorem 6

A 2-edge-coloured complete bipartite graph has an alternating
hamiltonian cycle if and only if it is colour-connected and has an
alternating cycle factor.
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Hamiltonian cycles in bipartite tournaments

A bipartite tournament is a bipartite digraph with partition
classes X and Y such that there is precisely one arc between each
vertex of X and each vertex of Y .

A cycle-factor in a digraph D is a disjoint collection of cycles
C1,C2, . . . ,Ck such that V (D) = V (C1) ∪ . . . ∪ V (Ck).

By using the BB correspondance and Theorem 6, Häggkvist and
Manousakis proved the following characterization of hamiltonian
bipartite tournaments.

Theorem 7 (Häggkvist and Manoussakis 1989; Gutin 1984)

A bipartite tournament has a hamiltonian cycle if and only if it is
strongly connected and has a cycle factor.
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In his PhD thesis, supervised by Manoussakis, Rachid Saad proved
the following characterization of the length of a longest alternating
cycle in a colour-connected 2-edge-coloured complete graph.

Theorem 8 (Saad 1996)

Let G be a colour-connected 2-edge-coloured complete graph. The
length of a longest alternating cycle in G is equal to the maximum
number of vertices that can be covered by disjoint alternating
cycles in G.

Theorem 8 immediately implies the Bankfalvi and Bankfalvi
theorem (Theorem 5).
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Irreducible cycle factors
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In the figure the 2-edge-coloured complete graph G is not
colour-connected since there is no alternating path starting with a
blue (red) edge from a red (blue) vertex on C2 to any vertex of C1.



For a given alternating cycle factor C1, . . . ,Cp, we write Ci→Cj if
the relationship between the cycles is as indicated in the figure
above where j > i .

Denote by Xj vertices of Cj that send only red edges to the left to
the left and by Yj the vertices of Cj that send only blue edges to
the left.

Theorem 9 (Bang-Jensen and Gutin 1998)

Let G have an alternating cycle factor F consisting of p ≥ 2
cycles. F is an irreducible alternating cycle factor of G if and only
if we can label the cycles in F as C1, . . . ,Cp, such that, with the
notation introduced above, for every 1 ≤ i < j ≤ p,
χ(XjV (Ci )) = 1, χ(YjV (Ci )) = 2, χ(XjXj) = 1, χ(YjYj) = 2.
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M-closed 2-edge-coloured graphs

Below we consider a generalization of 2-edge-coloured complete
multigraphs, namely those 2-edge-coloured graphs for which the
end-vertices of every monochromatic path of length 2 are adjacent,
that is, if xyz is a path and φ(xy) = φ(yz), then xz is an edge of
the graph.
The authors call such graphs M-closed.

Theorem 10 (Contreras-Balbuena, Galeana-Sáanchez and
Goldfeder 2019)

Let G be a 2-edge-coloured graph which is M-closed. Then G has
an alternating hamiltonian cycle if and only if it is
colour-connected and has an alternating cycle factor.
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Note the similarity between the condition for being M-closed and
the condition for a digraph to be locally semicomplete. A digraph
is locally semicomplete if the in-neighbourhood and the
out-neighbourhood of each vertex induces a semicomplete digraph.
The example below shows that this analogy does not extend to
in-semicomplete digraphs.
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Figure: A 2-edge-coloured graph G in which the end vertices x , z are
adjacent for every path xyz with φ(xy) = φ(yz) = 2 (2=blue). G is
colour-connected and has a cycle factor but it has no alternating
hamiltonian cycle. It also has no spanning closed alternating trail.



Trail-colour-connectivity

We call a 2-edge-coloured graph G trail-colour-connected if G
contains two alternating (u, v)-trails T1,T2 whose union is an
alternating walk for every pair distinct vertices u, v .

The following analogous of Lemma 2 is easy to derive using almost
the same proof as that of Lemma 2.

Lemma 11

Let G be a 2-edge-coloured graph. Then G is
trail-colour-connected if and only if G has an alternating
(u, v)-trail starting with colour c for each colour c ∈ {1, 2} and
every ordered pair of vertices u, v.
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Lemma 12 (Bang-Jensen, Bellitto and Yeo 2020)

A 2-edge-coloured complete multipartite graph is colour-connected
if and only if it is trail-colour-connected.

Theorem 13 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be a 2-edge coloured graph and let x , y ∈ V (G ) be
arbitrary. We can decide if there is a trail from x to y starting with
colour c1 and ending with colour c2 in polynomial time.



Eulerian factors and supereulerian edge-coloured graphs

Recall that a connected undirected graph is eulerian if it has
a spanning closed trail which uses every edge. By Euler’s
theorem, G is eulerian if and only if it is connected and the
degree of every vertex is even. This can be generalized to
2-edge-coloured graphs as follows.

A 2-edge coloured graph F is eulerian if it contains a closed
alternating trail which covers all the edges of G .

Following the standard proof of Euler’s theorem is easy to see
that a connected 2-edge coloured graph G is eulerian if and
only if each vertex v has even degree and half of the edges
incident to v have colour i for i ∈ [2].

Following the same definitions for graphs and digraphs, we say
that a 2-edge-coloured graph G is supereulerian if it contains
a spanning closed alternating trail.
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An eulerian factor of a 2-edge-coloured graph G is a collection of
vertex-disjoint induced subgraphs G1 = (V1,E1), . . . ,Gk = (Vk ,Ek)
of G , such that V = V1 ∪ . . . ∪ Vk and each Gi is supereulerian.

Lemma 14

There exists a polynomial algorithm for finding an eulerian factor
of a 2-edge-coloured graph G or producing a certificate that G has
no such factor.

Let G be a 2-edge-coloured graph. We will construct a new graph,
H, such that H has a perfect matching if and only if G has a
eulerian factor.
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Figure: A 2-edge-coloured graph G with a spanning closed alternating
trail in G v1v2v3v4v5v6v3v5v1 (indicated as directed edges).



Figure: The graph H = H(G ) constructed from the graph G above. The
perfect matching corresponding to the spanning eulerian subgraph
indicated in the figure above is shown with full lines. The colours are just
for easy reference to the other figure.



A digraph is semicomplete multipartite if the underlying
undirected graph is a complete multipartite graph.

Theorem 15 (Bang-Jensen and Maddaloni 2015)

A semicomplete multipartite digraph is supereulerian if and only if
is is strongly connected and has an eulerian factor.

Since a bipartite tournament is a semicomplete multipartite
digraph, the BB-correspondence implies the following
characterization of supereulerian 2-edge-coloured complete
bipartite graphs.

Corollary 16

A 2-edge-coloured complete bipartite graph G is supereulerian if
and only if G is colour-connected and has an eulerian factor.

As both the problem of deciding if a 2-edge-coloured graph is
colour-connected and the problem of deciding if it contains an
eulerian factor are polynomial time solvable, we note that
Corollary 16 implies that we in polynomial time can decide if a
2-edge-coloured complete bipartite graph is supereulerian.
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Extensions of edge-coloured graphs

Let G be a 2-edge-coloured graph on n > 1 vertices
{v1, v2, . . . , vn}. By an extension of G we mean any graph
H = G [Ip1 , . . . , Ipn ] that is obtained from G by replacing each
vertex vi by an independent set {vi ,1, . . . , vi ,pi} of pi ≥ 1 vertices,
i ∈ [n] and connecting different such sets as follows:

If vivj is an edge in G of colour c then H contains an edge of
colour c between vi ,q and vj ,r for every choice of q ∈ [pi ], r ∈ [pj ].

Proposition 17

For a 2-edge-coloured graph G the following are equivalent.

(i) G is colour-connected.

(ii) Every extension H of G is colour-connected.
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Theorem 18 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be an extension of an M-closed 2-edge-coloured graph.
Then G has an alternating hamiltonian cycle if and only if G is
colour-connected and has an alternating cycle factor.

Armed with Theorem 18 we are now ready to characterize
supereulerian extensions of M-closed 2-edge-coloured graphs.

Note that, by the example below, a supereulerian M-closed
2-edge-coloured graph does not have to be colour-connected, but
it must be trail-colour-connected.
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v2 v3

Figure: A non colour-connected graph with a spanning closed alternating
trail.
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The figure shows that for M-closed 2-edge-coloured graphs, having
a spanning closed alternating trail does not imply
colour-connectivity.
Note that the graph is trail-colour-connected, as is every
2-edge-coloured graph with a spanning closed alternating trail.

Theorem 19 (Bang-Jensen, Bellitto and Yeo 2020)

Let G be an extension of an M-closed 2-edge-coloured graph.
Then G is supereulerian if and only if it is trail-colour-connected
and has an eulerian factor.

Theorem 20

It is NP-complete to decide if a 2-edge-coloured graph is
supereulerian.
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For general 2-edge-coloured complete multipartite graphs, we have
no correspondence similar to the BB-correspondence.

Problem 21

What is the completely of deciding whether a 2-edge-coloured
complete multipartite graph has an alternating hamiltonian cycle?
Is there a good characterization?

The following is an easy consequence of the fact that A
2-edge-coloured complete multipartite graph is colour-connected if
and only if it is trail-colour-connected (by Lemma 12).

Proposition 22

If a 2-edge-coloured complete multipartite graph G has a spanning
closed alternating trail, then G is colour-connected.
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Proposition 23 (Bang-Jensen, Bellitto and Yeo)

There exists infinitely many 2-edge-coloured complete multipartite
graphs which are colour-connected and have an alternating cycle
factor but are not super-eulerian.

Conjecture 24 (Bang-Jensen, Bellitto and Yeo 2020)

There exists a polynomial algorithm for deciding whether a
2-edge-coloured complete multipartite graph is supereulerian.
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